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Hierarchical Tapered Bar Elements

Undergoing Axial Deformation
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ABSTRACT: A method is deJeribed to model the dynamics of tapered
axial barl of various crou sectionm based on the well-known Cralg/Bampton

component mode synthesis technlque. This element is formed in terms of
the itatlc conJtraint modes and interface restrained normal modes. This is

in contrast with the finite elements as implemented in NASTRAN where the
Interface rettralned normal modes are neglected. These normal modes are
in terms of Bessel functions. Restoration of a few of these modes leads to

higher accuracy with fewer generalized coordinates. The proposed models
are hierarchical so that all lower order element matrices are embedded in

higher order element matrices. The advantages of this formulation compared
to standard NASTRAN truss element formulation are demonstrated through
simple numerical examples.

1. Introduction: Tapered bars and beams have high strength to weight ratios as well

as architectural advantages. They axe frequently employed to model structures in di-

verse applications, such as ship masts, turbine blades, chimney structures or complex

frame constructions. NASA (Langley) has tested a truss structure which is made from

tapered members to be used in space applications [1]. The technical literature on tapered

beams is indeed vast with a long history [2-10]. Tapered beam finite elements are ei-

ther simple elements (e.g., Lindberg[2], Rouch/Kao[3]) having two degrees of freedom at

each end or higher order elements (e.g., Thomas/Dokumaci[4], To[5]) having more than

four degrees of freedom. Ovunck[6], Avakian/Beskos[7], Gupta[8], Banerjee/Williams[9]

and Spyrakos/Chen[10] have used frequency dependent finite elments in their analysis of

tapered bars. Banerjee/Williams[9] have developed exact dynamic stiffness matrices for

Bernoulli-Euler beams. However the approach in References [6-10] involves the unknown

frequencies of the overall structure. The general framework developed by Engels[11] and

applied in References [12-14] allows for the derivation of hierarchical finite elements for

any type of structural element. This approach does not require the prior knowledge of

system frequencies, thus overcoming the need for an iterative procedure to compute the

structural response. In the present paper, a dynamic finite element model for a certain

class of tapered bars with loads acting only in the axial direction is developed. The ele-

ment matrices are presented in parametric form and can be easily extended to formulate

the finite elments for a wide variety of tapered bars covering most practical cases. The

convergence properties of this dynamic finite element, when compared to the regular finite

element, are examined using numerical examples.

2. Assumed Modes Method: The Lagrangian elastic displacement vector e(z, y, z, t)

for a generic element can be written as the sum of two separate displacement vectors ez
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and _.

• = el + (1)

where e.r is a quasi-static displacement vector due to the interface displacements qz and is

expressed as a linear combination of static constraint modes _x,

** = (2)

The second part _ represents the remainder of the total displacement vector e. It is that

part of • which is measured relative to e! by an absolute observer. Clearly, _ vanishes

at the ql coordinates and therefore can be expressed as a linear combination of assumed

modes _b which are restrained at those ql coordinates

_=_b_ (3)

The vector _ represents a set of generalized coordinates to be determined as part of the

solution. One example of _ modes axe the normal modes of the element E restrained at the

ql coordinates. It should be stressed that although restrained normal modes have often

unique advantages, they axe only one of many possible sets. In fact, _ modes need only be

restricted to admissible functions that vanish at the qI coordinates. Substituting Eqs. (2)

{"}
and (3)into Eq. (1) yields

(4)

so that • is written in terms of a linear combination of two sets of assumed modes: (1)

static constraint modes and (2) interface restrained assumed modes. It should be noted

that the representation of • in Eq. (4) is complete in the sense that any degree of accuracy

is theoretically possible as long as enough _b modes are added.

In the standard consistent mass matrix approach, the elastic displacement vector •

over the element is represented as a linear combination of interpolation or shape functions.

In fact, these shape functions are identical to the static constraint modes _bz and therefore e

is approximated by el as in Eq. (1). The standard finite element approach therefore totally

neglects the displacement i in Eq. (1). Ignoring _ leads directly to a deterioration of the

modal content of a typical finite element model. One way to ensure better convergence

to a desired model fidelity is suggested by Eq. (4) and leads to dynamic finite element

models. Instead of totally neglecting the _ displacement, one could retain a limited number

of _ coordinates, thereby improving the mass and force distribution models. Of course,

adding _ coordinates also increases the order of the overall model. However, this approach

has three important advantages: (1) The model converges much faster, i.e., far fewer

degrees of freedom are necessary to attain comparable accuracy; (2) in principle, no further

subdivision of basic elements is necessary, thereby simplifying the finite element grid and

(3) the model is hierarchical and therefore has all the advantages associated with this

property. In addition, these finite element models are directly based on the assumed

modes method which provides a sound theoretical basis.
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In Reference [11] it is shown that for a linear elastic material, the element kinetic and

potential energies T and V can be written as

T: M:
E

v= fw+: cw+) dv

(5)

(6)
E

in which the matrix C is the material stiffness matrix and B contains the appropriate

partial derivatives in z,y and z. Futhermore, the matrices M and K represent the mass

and stiffness matrices of a generic finite element E. In partitioned form,

[MH MIN] K=[KH 0 ]M= MT N MNN ' 0 KNN (7)

MIz= f eTez dm, MzN= f eTe dm, MNN= f-¢r-_ dm (8)
E E E

KII = /(B¢I)TC(B¢I)dV, KNN -" /(B-¢)TC(B-¢)dV (9)

where

and

E E

Note that the KIN partition is always zero, which means that no stiffness coupling exists

between q1 and _.

At this point, a few remarks are in order. First, the matrices MH and KH repre-

sent the standard finite element consistent mass and stiffness matrices for the element E.

The consistent mass matrix approach represents in fact a static condensation or Guyan

reduction whereby all noninterface degrees of freedom are eliminated. Secondly, if the in-

terface restrained normal modes are used for the columns of ¢, then the present approach

is identical to the Craig/Bampton component mode synthesis procedure as applied to a

finite element. It should be emphasized that the element E is generic. This means that

the proposed approach is valid, at least in theory, for any type of element. In the present

paper, this general procedure will be applied to the special case of the tapered bars.

3. Tapered Bars: The hierarchical stiffness and mass matrices of the tapered bar are

obtained by solving the governing equations of motion for displacement. Figure (1) repre-

sents linear tapered bar ab with a straight centroidal axis and the directions of the principal

axes being the same for all crossections. The cross sectional area A(z) is given by

where c = db/da - 1 and Ai,di (i = a,b) denote the cross sectional area and the depth

respectively, c > -1 otherwise the beam tapers to zero between its ends and L is the

length of the bar.
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Although the formulation is valid for any n > 0, many

practicalcases of tapered bars arisewhen n isone or two, see

Figure (2). Ifthe geometrical properties of the element at both

ends are given, the shape function for n can be derived as

log(Ab/Aa) (11)
n- log(db/da)

For bars of closed box or I-section of constant width and vary-

ing depth, r_ is not an integer and wiU vary slightly from E-

q. (10) at all z other than the two ends. But the deviations

are usually within one percent of the exact values.

L

Figure 1.

1_apered Element

4. Static Constraint Modes: Consider the axial bar element as illustrated in Fig-

ure (1). The bar is assumed to undergo vibration along its own axis and as a rigid body can

only move along that same axis. The interface displacements are defined as q1(t) = u(O, t)

and q_(t) : u(L, t), i.e., qz = [ ql q2 ]T and the displacement vector • is considered to have

only one component, i.e., u. Eq. (4) is therefore written as

(12)

(n-l)

(n-2)

t t' t 0

,- 31
qo _o o

(aJ (iO) (¢) (0) (eJ

ELEVATION:
Call cases) _ (I.c)a

PLANS:

(I "C)d
I • C)_d

(for (b), (el. (d). (g), (for (el)
(for Ca), If) & (#),_ (hi & (J))

Figure 2. Sample Cross Sections
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The static constraint modes, _b_ can be computed from the differential equation for

the axial deformation u at z from end a of the tapered bar,

0m ----

dz

where E is Young's modulus. Integration of Eq. (13) gives,

EA(z) _-_ =C_ (14)

Substituting for A(z) from Eq. (10) and setting _ = 1 + c_ gives

du C1L 1
(15)

Integrating Eq. (15) again,
C1L

u - EA.cf(_.. + C2 (16)

where 1

f(_)= (n-l)_"-1 forn_l (17)

= In _ for n = 1

The appropriate boundary conditions for the computation of static constraint modes are

given by

ql = I, q2 = 0 (18)

ql = 0, q_ = 1

The resulting static constraint modes are

¢1 -- f(_) - f(1 + c) f(1) - f(_) (19)
f(1)-f(l+c)' ¢_= /(1)-f(l+c)

Note that these constraint modes are in fact the shape functions used in the stiffness matrix

of the tapered bar.

At this point, enough information exists to compute MH and KH from Eqs. (8-9).

Indeed, for the tapered bar, the kinetic and potential energies T and V are given as

L

T = _ pA(z)

0

2 1 [ dz
d,, j

(20)

Substituting Eq. (12)into Eq. (20) gives

L

MII = / pA(z)qb_¢idz

L

f .... d¢i T d¢I, KH= _Atz)--_x _dz
o

(21)
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When n -- 1, the explicit expressions for Kzz and MII are defined as

KII---- L In(I-l-c) -1 1 ' [.m21 _r_22

where

pA, L [-21n2(1 ÷ c) - 21n(1 + c) ÷ c2 + 2c]
m11 = 4cln2( 1 + c)

pA, L [(c 2 + 2e + 2)ln(1 + c) - c 2 - 2c] (23)
_12 "-- _r_21 4cln2(1 + c)

pAoL [2(1 + c)2(ln2(1 + c) - ln(1 + c)) + c2 + 2c]
m22 "- 4cln2( 1 + c)

The counterpart expression for KII when n _ 1 is given as

EA,c(n-1)(1-t-c)"-1 [ 1 -_1]KII (n # 1) (24)
(1 -t" c) "-1 - 1 -1 --

The stifness matrix partitions -_II and MII for n = 2 are evv.]uated as

gu = EA.(1 + c) -1 - (25)
L 1 1 ' 6 l+c 2(1+c) 2

Because of the similarity of the governing equations between axial bars and torsional

shafts, Eq. (25) can be used as the stiffness and consistent mass matrices for tapered shafts

by replacing the variables Aa, E with Ja, G respectively, where Ja is the polar second

moment of area and G is the shear modulus of elasticity. If it is decided that no extra

coordinates are to be retained in Eq. (4), then the procedure can be terminated at this

stage.

5. Interface Restrained Normal Modes: An entire class of hierarchical models can

now be created solely on the basis of choosing the interface restrained assumed modes. In

this paper, the set of interface restrained normal modes is used. The normal modes and

their corresponding frequencies are obtained from solving the eigenvalue problem associ-

ated with the partial differential equation,

az EA(z) --pA(z) at 2 (26)

subjected to the clamped-clamped boundary conditions.

Substituting for A(x) from Eq. (10) and letting ( : 1 + cz/L gives,

a2u n au pL 2 a2u

+ = Ec2 (27)
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For harmonic vibration,

u(_,t) = U(_)sinwt (28)

where t denotes time and w is the circular natural frequency. Eq. (27) is modified using

Eq. (28) as

d_ U n dU w2 P L2
a_----T + _ d--_-+ _-_c2 U = 0 (29)

The solution of Eq. (29) when c > 0 is

(30)

where J and Y are Bessel functions of the first and second kind and a = _ v/_-_.

For the case of n = 2, imposing the clamped-clamped boundary conditions in Eq. (30)

yields the characterstic equation for the tapered bar,

sin ac = 0 (31)

The solution of Eq. (31) is

to = -_ , i= 1,2,...,c¢ (32)

It is noteworthy that the natural frequencies of the tapered bar with clamped ends for the

case of n = 2 are independent of c and are in fact the same as that of uniform rods. From

Eq. (30), the interface restrained normal modes for n = 2 becomes

_ sin(,  -
_i = C"i

where the mass normalization constant Ci must satisfy

l+c

f pA(_)-¢_(_.)d_ = 1

1

Substituting Eq. (33) into Eq. (34), Ci is determined as

Ci= L

From Eq. (8), the mass matrix partitions are evaluated as

L L

M/'N = Ira/i], mii = /pA(z)¢j-¢idz

0

i = 1,2,...,e_, j = 1,2

(33)

(34)

(35)

(36)
MNN = /pA(z)-¢T-¢dz = I,

130



with

ml, -" ilr , m2i- ,_r (1 + c)(-1)'+I (37)

When c is set to zero, Eqs. (25) and (36) reduce to the case of uniform bars. Appli-

cation of Eq. (33) into Eq. (20) gives the stiffness matrix partitions,

KIN -" O, KNN --" Diag. [0_12 w_...] (38)

and _i isgiven by Eq. (32). It can be seen that the tapered bar element matrices consist

of very simple terms.

6. Demonstration Examples:

6.1 Tapered Cantilever: This first example is concerned

with the cantilevered bar clamped at the right end, see Fig-

ure (3). The pertinent structural parameters are E -- 30 ×

10 e psi, pg = 0.2839 lb/inS,A_ = 1 in2,Ab = 4 in 2 and L =

72 in.

The characteristic equation of this cantilever is given by

a cos ac + sin ac = 0 (39)

Tables (1) and (2) show the number of converged frequencies

to within a given percentage relative error when compared to

the theoretical frequencies from Eq. (39) for different model
orders n.

Figure 3. Cantilever

Note that the bar is subdivided into the requisite number of elements to arrive at the

model order n in the standard finite dement method as implemented in CSA-NASTRAN

whereas in the hierarchical finite element model, the number of bar elements is always one

and the requisite interface restrained normal modes are added to arrive at n.

Table 1. Standard Finite Element Method

<1%

<5%

< 10%

n

8 16 24 32 40

1 3 4 5 6

3 6 8 11 14

4 8 12 16 20
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Table 2. Hierarchical Finite Element Method

<1%

<5%

<10%

8 16 24 32 40

6 14 23 31 39

7 15 23 31 39

7 15 23 31 39

6.2 Planar Truss: Next, consider the planar single-bay truss /R,,

as illustrated in Figure (4). The parameters are the same as /\in Section (6.1). The horizontal bar has a uniform cross sec-

tional area of 4 in 2. For planar truss elements, the transverse _l I_

inertia must be taken into account. This time, however, no

'exact solution' for the frequencies of the structure exists. A

reference solution was obtained in two different ways: (1) by

constructing a highly refined standard finite element model (2)

by retaining a large number of normal modes in the hierarchical

model. Both models were refined to the point where no signif-

icant change in the frequencies occured and both the models

produced the same results.

Table (3) lists the frequencies from the hierarchical finite element model when two

normal modes per bar are added (i.e., n = 16) as compared to the reference solution. In

order to achieve comparable results from standard finite element method, each bar has to

be subdivided into five beam elements (i.e., n = 66) and consistent mass matrix has to be

generated within NASTRAN.

Table 3. Frequency Comparisons For Planar Truss

Mode

Number

2

3

5

7

9

II

13

14

16

Reference

Frequency (Hz)

2.606E2

2.999E2

6.958E2

1.467E3

1.757E3

2.141E3

2.889E3

3.049E3

3.382E3

Computed

Frequency (Hz)

2.606E2

2.999E2

6.961E2

1.468E3

1.762E3

2.172E3

2.898E3

3.081E3

3.505E3

Figure 4. Planar Truss

Error

%

-I.123E-2

-1.703E-2

-4.763E-2

-1.837E-2

-2.970E-I

-1.432

-3.317E-1

-1.045

-3.622
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7. Conclusions For the case of tapered bars, it has been demonstated that the modal

synthesis approach, where substructures are assembled to form the overall structure, can

be used at the element level itself. This approach has superior convergence characteristics

and the advantages of hierarchical formulation.
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